
Agile Estimation – What’s the Point?

Agile is at the forefront of many software development discussions these days, so I thought this would

be a good topic to dig into a little bit. There is a hotbed of activity in systems delivery around “Agile” –

everyone is asking for it, everyone wants to be Agile, especially in the realm of federal contracting. But

at the same time there seems to be quite a bit of misunderstanding and misinformation about how Agile

works in practice, especially when it comes to estimation. I’ve seen situations where customers ask for

organizational velocity, average velocity, or similar metrics for contractual reasons. This is nothing more

or less than problematic.

I’ve experienced other situations where we have to estimate software development effort and cost at

the macro level to create a project budget or a proposal bid, which is very difficult to do with most Agile

estimation techniques. So the purpose of this discussion is to dig into some Agile estimation concepts,

talk about where it works, and note where some challenges arise. Then we can discuss about some

other estimation approaches that may nicely complement or supplement these and can help overcome

some of these challenges.

Two Maxims

In my 20+ years of experience in estimating software development projects, I have come to understand

that two maxims are critical. Now when I use the term “maxim” I mean an expression of general

principal or truth.

1. Any approach to estimation MUST enable communication when changes to a project can

possibly impact cost and schedule of delivery.

You need to be able to explain the consequences to cost and schedule when requirements and/or

development conditions change. Communication, expectation management, and customer buy-in are

critical to project success – and these things are critical. Unless you’ve got unlimited budget and no time

constraints, you need to be able to explain the consequences to cost and schedule when (not if)

requirements and/or development conditions change.

2. Size matters.

Software should be estimated based on some sort of sizing unit. It’s simply an industry best practice that

too often gets ignored or overlooked. Estimating in level of effort (hours), although widely practiced,

does not enable effective communication. Hours is NOT a unit of size. Let me give you an example to

illustrate this. Let’s say we need to estimate how far Baltimore, Maryland is from Washington, DC. I

come up with an estimate of an hour and a half, but you generate an estimate that says it should only

take an hour. How do we reconcile that? Honestly we can’t. Depending on the route we take, how fast

we drive, the amount of traffic, weather conditions, etc., we really cannot have an informed discussion.

But if I say it’s 45 miles, then “miles” is a common unit of measure that we can have an informed

discussion about. Want to take the Baltimore Washington Parkway instead of I-95? Well that may give

us a different number of miles. But that “size” unit enables that informed discussion.

Another example: let’s say we’re building a house. Would you ever ask a builder to give you a 10,000

hour house? No! Of course you wouldn’t. You negotiate in terms of square feet, which is a common size

unit that enables effective communication and common understanding.

“Typical” Agile Estimation

First let’s agree that “typical” Agile estimation is probably a unicorn – it simply doesn’t exist. This makes

sense given what Agile development tries to accomplish and how Agile estimation techniques are

implemented. The Agile manifesto values individuals and interactions over processes and tools. Agile

teams are encouraged through the twelve principals to reflect on how to become more effective, then

to tune and adjust its behavior accordingly – which applies directly to estimation practices. So it’s no

surprise that Agile estimation cannot be defined by a specific approach, technique, or tool.

In practice, methods used for estimation on Agile software development projects vary widely. Agile

teams adopt their own approach and adapt it based on what works for them. Here is a list (certainly not

all-inclusive) of some methods that are widely known:

• Story points

• Bucket system

• Affinity mapping

• T-shirt sizing

• Ideal days

• Dot voting

• Ordering protocol

• Big/small/uncertain

• Planning poker

In spite of this variability, two key concepts are consistent across these methods. First, estimates are
generated in a collaborative manner. Teams participate in estimation and planning activities together so
many viewpoints, perspectives, and experience can be considered and included. Second, estimates are
typically reviewed and revised in an iterative manner. Each additional iteration is informed by
experience, lessons learned, and information gleaned from the previous sprint. So collaboration and
iteration are cornerstones of effective Agile estimation.

We can’t cover all of these Agile estimation techniques in a single article, so let’s focus on one approach
that is fairly widely used: story points.

Agile Estimation with Story Points

Story point estimation starts with the generation of user stories. User stories are short descriptions of a
desired function or feature written from an end-user perspective. They are often expressed in a way
that can be easily understood, such as, “As a user of this system, I want X feature so that I can
accomplish Y.” AS user stories are developed, they serve as the basis (requirements) for what software
functionality will be built. Product owners capture requirements from the business/customer. The Agile
team develops user stories from the users perspective and work with product owner to prioritize them
(user-centric collaboration in action). Agile teams assign story points to user stories as a size measure
that helps to plan out and deliver these priorities.

The Agile team selects what is called a “reference story” and determine the point value of that story.
Then all other stories are evaluated relatively against that reference. No “standards” exist for story

points. They are determined on a team-by-team basis. As an example, let’s say we want to estimate the
size of a set of vehicles. The table below demonstrates the relative sizing that two different teams might
come up with.

Vehicle Point Size

Honda (Reference) 5

Cadillac 8

Smart Car 2

Ford Pickup 13

Motorcycle 1

Semi Truck 21

Vehicle Point Size

Toyota (Reference) 7

School Bus 30

Minivan 10

Chevy Pickup 14

Fiat 3

Hummer Stretch Limo 20

Which one of these is correct? Both of them, assuming that the team collaboratively developed the
weighting. The key point of this illustration is that story point values are team-specific and will likely
evolve as the team works together over time. No two teams are going to define story points in the same
way, so tying to compare size estimates between two teams is an egregious error.

Velocity

In order to translate story points into effort, Agile teams need to understand their typical velocity.
Velocity basically measures the team output in story points per sprint. So once you have story point
estimates for a user story backlog, you can estimate how many sprints the Agile team will likely need to
complete the development. Likewise, velocity metrics help determine the scope of stories included in
each sprint. Velocity metrics are most reliable when certain conditions are met.

• Team members remain consistent across sprints

• Each sprint encompasses about the same number of work days

• Technology/development tools/programming languages remain consistent over the course of
the development life cycle

• Team members are fully dedicated to the project

Planning Poker

Planning poker provides opportunity for everyone on the product team to have input to size estimates
based on their roles, perspectives, and experiences. Teams often apply Fibonacci or other numerical
sequences. Discussion and iteration helps the team consider potential risk areas
and develop a collective agreement about what stories to include in a sprint.
Estimating story points and applying velocity metrics can reduce biases and
natural tendencies that typically occur when estimating level of effort in hours

Collaboration and iteration are essential to ensure all viewpoints and
experiences are taken into account in estimation and planning. Someone may
have additional insight into a particular story that the rest of the team may not,
so without group discussion this insight may be completely overlooked.

Hypothesis: In General, Story Point Estimation Works Well for Agile Teams for Planning Sprints

I wanted to start from the perspective that this type of estimation approach works well for a lot of Agile
teams. When a team has had some run time they can become very good at predicting how much they
can accomplish in a sprint. The immediacy of feedback of data from the previous sprint during
retrospectives provides the opportunity for lessons learned to be applied right away. The relative nature
of story points allows teams to tailor and calibrate the size unit to their own situation. Collaboration and
iteration with all stakeholders, including the customer/product owner encourages communication and
expectation management. Plenty of Agile teams have had success with this approach.

In some situations, however, story points and velocity do not work well and are insufficient to meet
stakeholder needs.

• Generation of estimates to establish initial project budgets. Limited IT budgets mean that
organizations must make choices when deciding what development projects to undertake in a
given timeframe. Projects compete for scarce funding and staffing resources. Other
environments (such as government contracting) require competitive bids to determine what
organization will deliver the work. Bidding organizations need to develop estimates that are
well-documented and defendable. It is virtually impossible to effectively apply story point sizing
to effective estimate a budget that early in the project life cycle. So for overall project
estimating for big picture budgeting and portfolio planning, Agile techniques may not be the
best approach.

• Formation of a new development team with no history together. With a new team, actual
velocity is unknown. Not only that, but an Agile team usually takes a few cycles to normalize
their estimation techniques. In fact, Agile estimation has to reset any time something changes
on a project, even if it is just the loss of a single team member.

• Establishment of organizational portfolio management with consistent metrics across
projects. Consistent IT productivity metrics require a consistent, standardized measure of
software size. As we’ve discussed, comparing story point sizing across different teams or
organizations basically amounts to estimation malpractice. This applied to competitive bidding
for development projects as well. Trying to effectively compare apples-to-apples across bids that
have completely different sizing metrics is simply not possible.

Other situations and circumstances can lead to less-than-optimal application of story point estimation
methods.

• Using points as a proxy for hours. It becomes very easy to slip into the habit of estimating how
many hours something will take, then calculating the number of story points that equals. For
example, 1 story point equates to 4 hours of work, and I estimate a piece of work will take 12
hours, which translates into 3 story points. This approach is no different than estimating in
hours and eliminates the benefits of using relative sizing.

• Treating velocity as productivity. Organizations often set improvement goals based on
productivity and quality metrics. For example, if a team produces a velocity of 20 story points
per sprint, management may challenge the team to improve performance by 25% and deliver 25
story points per sprint. Or if one team is delivering an average of 30 story points per sprint and

another is only completing 20, management may ask the second team why they are so much
less productive. These examples are inappropriate applications of metrics, and doing so will
result in unintended consequences and “bad behavior.” Don’t you think if you were on a team
delivering 20 story points per sprint, and some Pointy-Haired Boss said you needed to be
yielding 30, that you would find a way to update your story point weighting pretty quickly? Story
point inflation can be pretty easy with the right motivation.

• Customers can have an alternate idea of what a story point is or should be. Without an
established “standard” for story point, this disconnect can be a real possibility and can be a
source of serious miscommunication and misunderstanding. If your business customer and/or
product owner defines story points or their weighting differently from the development team,
collaboration can turn into combat. Let’s go back to our house analogy. What if house builders
each had their own sizing metric – instead of using a standard foot measure (12 inches), they
went back to the old days of a foot being equal to the size of their shoe. As the future home
owner with a size 12 shoe, you ask your builder for a 2,000-square foot home. Unfortunately,
your builder is closer in size to Herve Villachaize (who played Tattoo on Fantasy Island) with a
size 3 shoe. His measurements on that same sized house would be a serious source of
contention between the two of you.

A Supplemental (Alternative?) Approach

Given this range of challenges, I’d like to explore some ideas for estimating software size that can either
supplement or replace the use of story points on Agile development projects. If you’ve got Agile
estimation techniques in place that work for your team, great! I would never recommend disrupting
that. The idea of sizing user stories keeps the focus customer-centric, so keep doing what works. The
supplemental aspect of my proposal would help fill in some of the shortcomings of story points if your
team needs a more effective way to develop defendable initial project estimates or a set of consistent
metrics. However, if you find that your team has difficulty applying story point estimation consistently or
is frequently subjected to some of the other pitfalls, I would recommend an alternative approach to
sizing altogether.

If only there was an industry standard software sizing measure that is based on functionality described
from the users’ perspective…well, what do you know – there actually is! The function point sizing
standard established and maintained by the International Function Point Users Group (IFPUG) is exactly
that. Function points measure software size based on the functional requirements requested by and
provided to the user. Counting rules are documented and maintained in the
Counting Practices Manual. Function points are accepted as a standard size
measure by ISO(20926:2009). IFPUG also offer a certification program to
recognize experts in the field – certified function point practitioner (CFPP) and
specialist (CFPS).

A Quick Function Point Overview

I don’t want to get too far into details, but it’s important to understand the basic function point counting
methodology. There are two types of functions: data functions and transaction functions. Data functions
represent the “things,” or pieces of information, the system needs to meet the users’ needs. Transaction
functions are the business processes, reports, etc. – that data in motion – that users need to manage
and manipulate the data to do their jobs.

The methodology essentially involves identifying data and transaction functions, assessing the
complexity, and applying the standard function point weighting matrix. Data function complexity is
determined by the number of data elements and logical data subgroupings. Transaction function
complexity determined by the number of data elements and files referenced during the transaction. The
IFPUG weighting matrix identifies how many function points each identified function receives.

This matrix is the foundation of the standard, and ensures that counts are consistent, repeatable, fully
documentable, and auditable. The IFPUG FP matrix identifies how many function points each type of
function receives based on its complexity. By nature, it also has an aspect of relativity to it, similar to
that of story point sizing, but much less subjective. A function point is by definition a standardized
metric that describes a unit of work product suitable for quantifying software that is based on what the
end user requests and receives. Translating that into more common terms: all things being equal, an
average internal logical file at 10 FP should take about twice the effort as an average external output.
One of the key differences from story points here is that with the rules and standards, sizing becomes
more objective.

The Problem with Function Points

This all sounds great, right? Customer-centric sizing, standardized and ready to go! So why aren’t
function points more widely applied to Agile development projects? Well, it turns out that function
points have a real problem that is prevalent: perception. The term “function points” can evoke a visceral
negative reaction from many people, especially Agile enthusiasts. Try it sometime. Just mention the
term “function points” to an Agile developer, and you will probably get one of two reactions: either,
“What’s that?” or, “No way, function points don’t work in Agile.” Function points take too much time
and effort. Requirements must be fully defined to effectively apply function points. Function points
don’t offer the flexibility we need to estimate in an Agile environment. Function points are not granular
enough to apply in an Agile environment. Usually these arguments are made without actual experience
with function points, which is why I claim that this is really a problem of perception. But perception can
become reality, so the end result is the same.

Revisiting the Agile manifesto and principles, you can understand why the initial reaction to something
as structured and “archaic” as function points would be resistance and rejection.

• Values individuals and interactions over processes and tools.

• At regular intervals, team reflects on how to become more effective, then tunes and adjusts its
behavior accordingly.

Point taken! Maybe there are just too many obstacles to overcome to ever effectively and consistently
apply function points in an Agile development environment. So how do we deal with this bias against
function points and still address the challenges of Agile estimation? This is something a group of

estimation experts have thought long and hard about, with many late night meetings and contentious
discussions, maybe even a few broken chairs.

And we came up with a concept called Agilons

Agilons

The Agilon sizing method is similar to function points, only they are applied specifically to Agile software
development projects. There are five types of Agilons.

1. Internal data – managed by the application

2. External data – referenced by the application but managed by some other application

3. Inputs – add, change, delete internal data

4. Outputs – reports, calculations based on internal or external data

5. Inquiries – search and retrieval of internal or external data

Agilon complexity generally can be determined by the number of data elements involved. However, this
detailed information is not always available when an estimate needs to be completed. If this is the case,
analysts should simply make an assumption about Agilon complexity and document it for future review
and discussion. One common technique applied is to assume that all functions are average complexity.
Here is the standard Agilon weighting matrix:

This might look familiar to you. It’s not quite a Fibonacci sequence, but yeah, it’s pretty close.

Analyzing user stories in the Agilon framework can provide a good litmus test for those user stories. If a
user story can be applied to more than one type of Agilon, it probably should be broken down into
simpler stories (concept of elementary process or minimum viable product). Velocity can be measured
in Agilons per sprint

Let’s take a look at a real user story and apply the Agilons framework.

As a customer I would like to have the ability to search for and
reserve a hotel room in order to spend the night in another city.

First off we should recognizing that details on data elements are missing, so we can assume “average”
complexity for any identified Agilons. This is just an assumption, but it’s one I can document and revisit
later. If I had a different understanding about the simplicity or complexity, then perhaps I would make a
difference assumption. For example, perhaps I have previously seen similar functionality in a different

Low Average High

Internal Data 7 10 15

External Data 5 7 10

Inputs 3 4 6

Outputs 4 5 7

Inquiries 3 4 6

application, and know that there are usually a low number of data elements involved. Then I could in
good conscience assume low complexity and move on from there.
Analyzing this user story reveals multiple Agilon types that need to be decomposed.

Description Agilon Type Agilon Size

Hotel data Internal data 10

Search for hotel room Inquiry 4

Reserve hotel room Input 4

 Total 18

Size is really only part of the estimation equation….so how do we translate that into effort, cost, and
schedule? When converting size to cost, historical data is ideal. With a consistent sizing metric like
Agilons, data can be collected from across an organization and used as the basis of estimate. Data can
be stratified and applied appropriately to new teams, mixed teams, experience teams, etc. In this
situation for sprint planning purposes I would simply review my team’s velocity. If it is around 18 to 20
Agilons per sprint, we’re good to go. But what happens if we don’t have that data, or if we’re tackling a
new type of application with a newly formed team?

In this scenario , an estimation tool like SEER for Software can be an effective way to generate and
document estimates. SEER for Software leverages large historical data sets and flexible input
parameters. Outputs from tools are based on assumptions (size, personnel skills and experience,
development environment, etc. which can be fully documented and discussed. SEER for Software is
parametric in nature, meaning calculations are based on complex statistical algorithms. The
customizable Sizing Metric function in SEER for Software enables users to apply the Agilon framework to
develop an estimate.

Coming Full Circle

So how does this approach really address the challenges of story point estimation? Let’s revisit some of
the most significant pitfalls of estimating with story points.

• Generation of estimates to establish initial project budgets. With Agilons, estimates can be
fully documented and explained, even in the absence of requirements, and then can be used
facilitate communication. You can establish a project baseline, but when conditions turn out
differently than anticipated, the estimation methodology becomes a mechanism for
communicating what has changed and why, as well as what can be accomplished.

• Formation of a new development team with no history together. Applying Agilons as a
standardized sizing metric, combined with good historical data or a parametric model, you can
provide estimates that stakeholders can
understand. You can tailor the estimate to the
combined experience of the development team.

• Establishment of organizational portfolio management with consistent metrics across
projects. Leveraging Agilons as a standardized size measure across an IT portfolio empowers
consistent productivity and quality metrics across an organization, offering real possibilities for
improvement.

Sources

Berteig, Mishkin, “9 Agile Estimation Techniques,” Agile Advice Blog, October 13, 2015.

http://www.agileadvice.com/2015/10/13/agilemanagement/9-agile-estimation-techniques/

Clifford, John, “Agile Estimation: Key Principles and Practices for Successful Agile Projects,” 2012.

http://www.construx.com/uploadedFiles/Construx/Construx_Content/Resources/Presentation/AgileEsti

mation_KeyPrinciplesAndPracticesforSuccessfulAgileProjects.pdf

Cohn, Mike, Agile Estimating and Planning, Prentice Hall Professional Technical Reference, 2006.

Cohn, Mike, “The Main Benefit of Story Points,” September 9, 2014.

 https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points

Computer Associates, “Top 10 Mistakes Made by New Agile Teams,” 2016.

 https://help.rallydev.com/top-10-mistakes-teams

David Consulting Group, “Can Function Points be Counted/Estimated from User Stories?” Trusted

Advisor, April 2016.

Donavan, John, Agile Estimation Practices – Demystifying Story Points, John Donovan, 2013.

Green, M. David, “Do You Make These 7 Agile Estimation Mistakes?” July 9, 2014.

https://www.sitepoint.com/make-7-mistakes-agile-estimation/

IFPUG, “Applying Function Point Analysis to Scrum Agile Software Development Projects,” V.1.0,

October 25, 2013

James, Michael, “Scrum Effort Estimation and Story Points,” Scrum Methodology Blog, November 21,

2009.

http://scrummethodology.com/scrum-effort-estimation-and-story-points/

Kerievsky, Joshua “Stop Using Story Points,” October 12, 2012,

https://www.industriallogic.com/blog/stop-using-story-points/

Radigan, Dan, “Collaboration, Abstraction, and Other Secrets of Agile Estimation,” Undated.

https://www.atlassian.com/agile/estimation

http://www.agileadvice.com/2015/10/13/agilemanagement/9-agile-estimation-techniques/
http://www.agileadvice.com/2015/10/13/agilemanagement/9-agile-estimation-techniques/
http://www.agileadvice.com/2015/10/13/agilemanagement/9-agile-estimation-techniques/
http://www.construx.com/uploadedFiles/Construx/Construx_Content/Resources/Presentation/AgileEstimation_KeyPrinciplesAndPracticesforSuccessfulAgileProjects.pdf
http://www.construx.com/uploadedFiles/Construx/Construx_Content/Resources/Presentation/AgileEstimation_KeyPrinciplesAndPracticesforSuccessfulAgileProjects.pdf
https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points
https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points
https://www.mountaingoatsoftware.com/blog/the-main-benefit-of-story-points
https://help.rallydev.com/top-10-mistakes-teams
https://help.rallydev.com/top-10-mistakes-teams
https://help.rallydev.com/top-10-mistakes-teams
https://www.sitepoint.com/make-7-mistakes-agile-estimation/
https://www.sitepoint.com/make-7-mistakes-agile-estimation/
https://www.sitepoint.com/make-7-mistakes-agile-estimation/
http://scrummethodology.com/scrum-effort-estimation-and-story-points/
http://scrummethodology.com/scrum-effort-estimation-and-story-points/
http://scrummethodology.com/scrum-effort-estimation-and-story-points/
https://www.industriallogic.com/blog/stop-using-story-points/
https://www.industriallogic.com/blog/stop-using-story-points/
https://www.industriallogic.com/blog/stop-using-story-points/
https://www.atlassian.com/agile/estimation
https://www.atlassian.com/agile/estimation
https://www.atlassian.com/agile/estimation

